class statsmodels.discrete.discrete_model.NegativeBinomial(endog, exog, loglike_method='nb2', offset=None, exposure=None, missing='none', **kwargs) [source]
Negative Binomial Model for count data
| Parameters: |
|
|---|
endog array – A reference to the endogenous response variable
exog array – A reference to the exogenous design.
References:
cdf(X) | The cumulative distribution function of the model. |
cov_params_func_l1(likelihood_model, xopt, …) | Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. |
fit([start_params, method, maxiter, …]) | Fit the model using maximum likelihood. |
fit_regularized([start_params, method, …]) | Fit the model using a regularized maximum likelihood. |
from_formula(formula, data[, subset, drop_cols]) | Create a Model from a formula and dataframe. |
hessian(params) | The Hessian matrix of the model |
information(params) | Fisher information matrix of model |
initialize() | Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. |
loglike(params) | Loglikelihood for negative binomial model |
pdf(X) | The probability density (mass) function of the model. |
predict(params[, exog, exposure, offset, linear]) | Predict response variable of a count model given exogenous variables. |
score(params) | Score vector of model. |
score_obs(params) |
endog_names | Names of endogenous variables |
exog_names | Names of exogenous variables |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.NegativeBinomial.html