class statsmodels.discrete.discrete_model.NegativeBinomialP(endog, exog, p=2, offset=None, exposure=None, missing='none', **kwargs) [source]
Generalized Negative Binomial (NB-P) model for count data
| Parameters: |
|
|---|
endog array – A reference to the endogenous response variable
exog array – A reference to the exogenous design.
p scalar – P denotes parameterizations for NB-P regression. p=1 for NB-1 and p=2 for NB-2. Default is p=1.
cdf(X) | The cumulative distribution function of the model. | ||||
convert_params(params, mu) | |||||
cov_params_func_l1(likelihood_model, xopt, …) | Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. | ||||
fit([start_params, method, maxiter, …]) |
| ||||
fit_regularized([start_params, method, …]) | Fit the model using a regularized maximum likelihood. | ||||
from_formula(formula, data[, subset, drop_cols]) | Create a Model from a formula and dataframe. | ||||
hessian(params) | Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood | ||||
information(params) | Fisher information matrix of model | ||||
initialize() | Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. | ||||
loglike(params) | Loglikelihood of Generalized Negative Binomial (NB-P) model | ||||
loglikeobs(params) | Loglikelihood for observations of Generalized Negative Binomial (NB-P) model | ||||
pdf(X) | The probability density (mass) function of the model. | ||||
predict(params[, exog, exposure, offset, which]) | Predict response variable of a model given exogenous variables. | ||||
score(params) | Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood | ||||
score_obs(params) | Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. | ||||
endog_names | Names of endogenous variables |
exog_names | Names of exogenous variables |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.NegativeBinomialP.html