W3cubDocs

/Statsmodels

statsmodels.discrete.discrete_model.Probit.score

Probit.score(params) [source]

Probit model score (gradient) vector

Parameters: params (array-like) – The parameters of the model
Returns: score – The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at params
Return type: ndarray, 1-D

Notes

\[\frac{\partial\ln L}{\partial\beta}=\sum_{i=1}^{n}\left[\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\right]x_{i}\]

Where \(q=2y-1\). This simplification comes from the fact that the normal distribution is symmetric.

© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.Probit.score.html