| aic() |  | 
 
| bic() |  | 
 
| bse() |  | 
 
| conf_int([alpha, cols, method]) | Returns the confidence interval of the fitted parameters. | 
 
| cov_params([r_matrix, column, scale, cov_p, …]) | Returns the variance/covariance matrix. | 
 
| f_test(r_matrix[, cov_p, scale, invcov]) | Compute the F-test for a joint linear hypothesis. | 
 
| fittedvalues() |  | 
 
| get_margeff([at, method, atexog, dummy, count]) | Get marginal effects of the fitted model. | 
 
| initialize(model, params, **kwd) |  | 
 
| llf() |  | 
 
| llnull() |  | 
 
| llr() |  | 
 
| llr_pvalue() |  | 
 
| load(fname) | load a pickle, (class method) | 
 
| normalized_cov_params() |  | 
 
| pred_table([threshold]) | Prediction table | 
 
| predict([exog, transform]) | Call self.model.predict with self.params as the first argument. | 
 
| prsquared() |  | 
 
| pvalues() |  | 
 
| remove_data() | remove data arrays, all nobs arrays from result and model | 
 
| resid_dev() | Deviance residuals | 
 
| resid_generalized() | Generalized residuals | 
 
| resid_pearson() | Pearson residuals | 
 
| resid_response() | The response residuals | 
 
| save(fname[, remove_data]) | save a pickle of this instance | 
 
| set_null_options([llnull, attach_results]) | set fit options for Null (constant-only) model | 
 
| summary([yname, xname, title, alpha, yname_list]) | Summarize the Regression Results | 
 
| summary2([yname, xname, title, alpha, …]) | Experimental function to summarize regression results | 
 
| t_test(r_matrix[, cov_p, scale, use_t]) | Compute a t-test for a each linear hypothesis of the form Rb = q | 
 
| t_test_pairwise(term_name[, method, alpha, …]) | perform pairwise t_test with multiple testing corrected p-values | 
 
| tvalues() | Return the t-statistic for a given parameter estimate. | 
 
| wald_test(r_matrix[, cov_p, scale, invcov, …]) | Compute a Wald-test for a joint linear hypothesis. | 
 
| wald_test_terms([skip_single, …]) | Compute a sequence of Wald tests for terms over multiple columns |