ProbitResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis.
| Parameters: | 
 | 
|---|---|
| Returns: | res – The results for the test are attributes of this results instance. | 
| Return type: | ContrastResults instance | 
See also
statsmodels.stats.contrast.ContrastResults, f_test, t_test, patsy.DesignInfo.linear_constraint
The matrix r_matrix is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.ProbitResults.wald_test.html