class statsmodels.multivariate.cancorr.CanCorr(endog, exog, tolerance=1e-08, missing='none', hasconst=None, **kwargs) [source]
Canonical correlation analysis using singluar value decomposition
For matrices exog=x and endog=y, find projections x_cancoef and y_cancoef such that:
x1 = x * x_cancoef, x1’ * x1 is identity matrix y1 = y * y_cancoef, y1’ * y1 is identity matrixand the correlation between x1 and y1 is maximized.
endog array – See Parameters.
exog array – See Parameters.
cancorr array – The canonical correlation values
y_cancoeff array – The canonical coeefficients for endog
x_cancoeff array – The canonical coefficients for exog
| [*] | http://numerical.recipes/whp/notes/CanonCorrBySVD.pdf | 
| [†] | http://www.csun.edu/~ata20315/psy524/docs/Psy524%20Lecture%208%20CC.pdf | 
| [‡] | http://www.mathematica-journal.com/2014/06/canonical-correlation-analysis/ | 
| corr_test() | Approximate F test Perform multivariate statistical tests of the hypothesis that there is no canonical correlation between endog and exog. | 
| fit() | Fit a model to data. | 
| from_formula(formula, data[, subset, drop_cols]) | Create a Model from a formula and dataframe. | 
| predict(params[, exog]) | After a model has been fit predict returns the fitted values. | 
| endog_names | Names of endogenous variables | 
| exog_names | Names of exogenous variables | 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.multivariate.cancorr.CanCorr.html