KDEMultivariateConditional.cdf(endog_predict=None, exog_predict=None) [source]
Cumulative distribution function for the conditional density.
| Parameters: |
|
|---|---|
| Returns: |
cdf_est – The estimate of the cdf. |
| Return type: |
array_like |
For more details on the estimation see [2], and p.181 in [1].
The multivariate conditional CDF for mixed data (continuous and ordered/unordered discrete) is estimated by:
where G() is the product kernel CDF estimator for the dependent (y) variable(s) and W() is the product kernel CDF estimator for the independent variable(s).
| [1] | Racine, J., Li, Q. Nonparametric econometrics: theory and practice. Princeton University Press. (2007) |
| [2] | Liu, R., Yang, L. “Kernel estimation of multivariate cumulative distribution function.” Journal of Nonparametric Statistics (2008) |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.nonparametric.kernel_density.KDEMultivariateConditional.cdf.html