/Statsmodels

statsmodels.regression.quantile_regression.QuantRegResults.cov_params

`QuantRegResults.cov_params(r_matrix=None, column=None, scale=None, cov_p=None, other=None)`

Returns the variance/covariance matrix.

The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar.

Parameters: r_matrix (array-like) – Can be 1d, or 2d. Can be used alone or with other. column (array-like, optional) – Must be used on its own. Can be 0d or 1d see below. scale (float, optional) – Can be specified or not. Default is None, which means that the scale argument is taken from the model. other (array-like, optional) – Can be used when r_matrix is specified. cov – covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes. ndarray

Notes

(The below are assumed to be in matrix notation.)

If no argument is specified returns the covariance matrix of a model `(scale)*(X.T X)^(-1)`

If contrast is specified it pre and post-multiplies as follows `(scale) * r_matrix (X.T X)^(-1) r_matrix.T`

If contrast and other are specified returns `(scale) * r_matrix (X.T X)^(-1) other.T`

If column is specified returns `(scale) * (X.T X)^(-1)[column,column]` if column is 0d

OR

`(scale) * (X.T X)^(-1)[column][:,column]` if column is 1d

© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor