class statsmodels.regression.recursive_ls.RecursiveLSResults(model, params, filter_results, cov_type='opg', **kwargs) [source]
Class to hold results from fitting a recursive least squares model.
| Parameters: | model (RecursiveLS instance) – The fitted model instance | 
|---|
specification dictionary – Dictionary including all attributes from the recursive least squares model instance.
See also
statsmodels.tsa.statespace.kalman_filter.FilterResults, statsmodels.tsa.statespace.mlemodel.MLEResults
| aic() | (float) Akaike Information Criterion | 
| bic() | (float) Bayes Information Criterion | 
| bse() | |
| conf_int([alpha, cols, method]) | Returns the confidence interval of the fitted parameters. | 
| cov_params([r_matrix, column, scale, cov_p, …]) | Returns the variance/covariance matrix. | 
| cov_params_approx() | (array) The variance / covariance matrix. | 
| cov_params_oim() | (array) The variance / covariance matrix. | 
| cov_params_opg() | (array) The variance / covariance matrix. | 
| cov_params_robust() | (array) The QMLE variance / covariance matrix. | 
| cov_params_robust_approx() | (array) The QMLE variance / covariance matrix. | 
| cov_params_robust_oim() | (array) The QMLE variance / covariance matrix. | 
| cusum() | Cumulative sum of standardized recursive residuals statistics | 
| cusum_squares() | Cumulative sum of squares of standardized recursive residuals statistics | 
| f_test(r_matrix[, cov_p, scale, invcov]) | Compute the F-test for a joint linear hypothesis. | 
| fittedvalues() | (array) The predicted values of the model. | 
| forecast([steps]) | Out-of-sample forecasts | 
| get_forecast([steps]) | Out-of-sample forecasts | 
| get_prediction([start, end, dynamic, index]) | In-sample prediction and out-of-sample forecasting | 
| hqic() | (float) Hannan-Quinn Information Criterion | 
| impulse_responses([steps, impulse, …]) | Impulse response function | 
| info_criteria(criteria[, method]) | Information criteria | 
| initialize(model, params, **kwd) | |
| llf() | (float) The value of the log-likelihood function evaluated at params. | 
| llf_obs() | (float) The value of the log-likelihood function evaluated at params. | 
| load(fname) | load a pickle, (class method) | 
| loglikelihood_burn() | (float) The number of observations during which the likelihood is not evaluated. | 
| normalized_cov_params() | |
| plot_cusum([alpha, legend_loc, fig, figsize]) | Plot the CUSUM statistic and significance bounds. | 
| plot_cusum_squares([alpha, legend_loc, fig, …]) | Plot the CUSUM of squares statistic and significance bounds. | 
| plot_diagnostics([variable, lags, fig, figsize]) | Diagnostic plots for standardized residuals of one endogenous variable | 
| plot_recursive_coefficient([variables, …]) | Plot the recursively estimated coefficients on a given variable | 
| predict([start, end, dynamic]) | In-sample prediction and out-of-sample forecasting | 
| pvalues() | (array) The p-values associated with the z-statistics of the coefficients. | 
| remove_data() | remove data arrays, all nobs arrays from result and model | 
| resid() | (array) The model residuals. | 
| resid_recursive() | Recursive residuals | 
| save(fname[, remove_data]) | save a pickle of this instance | 
| simulate(nsimulations[, measurement_shocks, …]) | Simulate a new time series following the state space model | 
| summary([alpha, start, title, model_name, …]) | Summarize the Model | 
| t_test(r_matrix[, cov_p, scale, use_t]) | Compute a t-test for a each linear hypothesis of the form Rb = q | 
| t_test_pairwise(term_name[, method, alpha, …]) | perform pairwise t_test with multiple testing corrected p-values | 
| test_heteroskedasticity(method[, …]) | Test for heteroskedasticity of standardized residuals | 
| test_normality(method) | Test for normality of standardized residuals. | 
| test_serial_correlation(method[, lags]) | Ljung-box test for no serial correlation of standardized residuals | 
| tvalues() | Return the t-statistic for a given parameter estimate. | 
| wald_test(r_matrix[, cov_p, scale, invcov, …]) | Compute a Wald-test for a joint linear hypothesis. | 
| wald_test_terms([skip_single, …]) | Compute a sequence of Wald tests for terms over multiple columns | 
| zvalues() | (array) The z-statistics for the coefficients. | 
| recursive_coefficients | Estimates of regression coefficients, recursively estimated | 
| use_t | 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.regression.recursive_ls.RecursiveLSResults.html