- 
statsmodels.stats.stattools.robust_kurtosis(y, axis=0, ab=(5.0, 50.0), dg=(2.5, 25.0), excess=True)[source]
- 
Calculates the four kurtosis measures in Kim & White     
| Parameters: |  
y (array-like) – 
axis (int or None, optional) – Axis along which the kurtoses are computed. If None, the entire array is used.
ab (iterable, optional) – Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure
db (iterable, optional) – Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure
excess (bool, optional) – If true (default), computed values are excess of those for a standard normal distribution. |  
| Returns: |  
kr1 (ndarray) – The standard kurtosis estimator.
kr2 (ndarray) – Kurtosis estimator based on octiles.
kr3 (ndarray) – Kurtosis estimators based on exceedence expectations.
kr4 (ndarray) – Kurtosis measure based on the spread between high and low quantiles. |  
 NotesThe robust kurtosis measures are defined  \[KR_{2}=\frac{\left(\hat{q}_{.875}-\hat{q}_{.625}\right) +\left(\hat{q}_{.375}-\hat{q}_{.125}\right)} {\hat{q}_{.75}-\hat{q}_{.25}}\]  \[KR_{3}=\frac{\hat{E}\left(y|y>\hat{q}_{1-\alpha}\right) -\hat{E}\left(y|y<\hat{q}_{\alpha}\right)} {\hat{E}\left(y|y>\hat{q}_{1-\beta}\right) -\hat{E}\left(y|y<\hat{q}_{\beta}\right)}\]  \[KR_{4}=\frac{\hat{q}_{1-\delta}-\hat{q}_{\delta}} {\hat{q}_{1-\gamma}-\hat{q}_{\gamma}}\] where \(\hat{q}_{p}\) is the estimated quantile at \(p\).