DynamicFactorResults.t_test_pairwise(term_name, method='hs', alpha=0.05, factor_labels=None) perform pairwise t_test with multiple testing corrected p-values
This uses the formula design_info encoding contrast matrix and should work for all encodings of a main effect.
| Parameters: | 
 | 
|---|---|
| Returns: | results – The results are stored as attributes, the main attributes are the following two. Other attributes are added for debugging purposes or as background information. 
 | 
| Return type: | instance of a simple Results class | 
Status: experimental. Currently only checked for treatment coding with and without specified reference level.
Currently there are no multiple testing corrected confidence intervals available.
>>> res = ols("np.log(Days+1) ~ C(Weight) + C(Duration)", data).fit()
>>> pw = res.t_test_pairwise("C(Weight)")
>>> pw.result_frame
         coef   std err         t         P>|t|  Conf. Int. Low
2-1  0.632315  0.230003  2.749157  8.028083e-03        0.171563
3-1  1.302555  0.230003  5.663201  5.331513e-07        0.841803
3-2  0.670240  0.230003  2.914044  5.119126e-03        0.209488
     Conf. Int. Upp.  pvalue-hs reject-hs
2-1         1.093067   0.010212      True
3-1         1.763307   0.000002      True
3-2         1.130992   0.010212      True
 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.dynamic_factor.DynamicFactorResults.t_test_pairwise.html