class statsmodels.tsa.statespace.kalman_smoother.KalmanSmoother(k_endog, k_states, k_posdef=None, results_class=None, kalman_smoother_classes=None, **kwargs)
[source]
State space representation of a time series process, with Kalman filter and smoother.
Parameters: |
|
---|
bind (endog) | Bind data to the statespace representation |
filter ([filter_method, inversion_method, …]) | Apply the Kalman filter to the statespace model. |
impulse_responses ([steps, impulse, …]) | Impulse response function |
initialize_approximate_diffuse ([variance]) | Initialize the statespace model with approximate diffuse values. |
initialize_known (initial_state, …) | Initialize the statespace model with known distribution for initial state. |
initialize_stationary () | Initialize the statespace model as stationary. |
loglike (**kwargs) | Calculate the loglikelihood associated with the statespace model. |
loglikeobs (**kwargs) | Calculate the loglikelihood for each observation associated with the statespace model. |
set_conserve_memory ([conserve_memory]) | Set the memory conservation method |
set_filter_method ([filter_method]) | Set the filtering method |
set_filter_timing ([alternate_timing]) | Set the filter timing convention |
set_inversion_method ([inversion_method]) | Set the inversion method |
set_smooth_method ([smooth_method]) | Set the smoothing method |
set_smoother_output ([smoother_output]) | Set the smoother output |
set_stability_method ([stability_method]) | Set the numerical stability method |
simulate (nsimulations[, measurement_shocks, …]) | Simulate a new time series following the state space model |
smooth ([smoother_output, smooth_method, …]) | Apply the Kalman smoother to the statespace model. |
conserve_memory | |
design | |
dtype | (dtype) Datatype of currently active representation matrices |
endog | |
filter_augmented | |
filter_collapsed | |
filter_conventional | |
filter_exact_initial | |
filter_extended | |
filter_method | |
filter_methods | |
filter_square_root | |
filter_timing | |
filter_univariate | |
filter_unscented | |
inversion_method | |
inversion_methods | |
invert_cholesky | |
invert_lu | |
invert_univariate | |
memory_conserve | |
memory_no_filtered | |
memory_no_forecast | |
memory_no_gain | |
memory_no_likelihood | |
memory_no_predicted | |
memory_no_smoothing | |
memory_no_std_forecast | |
memory_options | |
memory_store_all | |
obs | (array) Observation vector – \(y~(k\_endog \times nobs)\) |
obs_cov | |
obs_intercept | |
prefix | (str) BLAS prefix of currently active representation matrices |
selection | |
smooth_alternative | (bool) Flag for alternative (modified Bryson-Frazier) smoothing. |
smooth_classical | (bool) Flag for classical (see e.g. |
smooth_conventional | (bool) Flag for conventional (Durbin and Koopman, 2012) Kalman smoothing. |
smooth_method | |
smooth_methods | |
smooth_univariate | (bool) Flag for univariate smoothing (uses modified Bryson-Frazier timing). |
smoother_all | |
smoother_disturbance | |
smoother_disturbance_cov | |
smoother_output | |
smoother_outputs | |
smoother_state | |
smoother_state_autocov | |
smoother_state_cov | |
solve_cholesky | |
solve_lu | |
stability_force_symmetry | |
stability_method | |
stability_methods | |
state_cov | |
state_intercept | |
time_invariant | (bool) Whether or not currently active representation matrices are time-invariant |
timing_init_filtered | |
timing_init_predicted | |
timing_options | |
transition |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.kalman_smoother.KalmanSmoother.html