UnobservedComponentsResults.cov_params(r_matrix=None, column=None, scale=None, cov_p=None, other=None) Returns the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar.
| Parameters: | 
 | 
|---|---|
| Returns: | cov – covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes. | 
| Return type: | ndarray | 
(The below are assumed to be in matrix notation.)
If no argument is specified returns the covariance matrix of a model (scale)*(X.T X)^(-1)
If contrast is specified it pre and post-multiplies as follows (scale) * r_matrix (X.T X)^(-1) r_matrix.T
If contrast and other are specified returns (scale) * r_matrix (X.T X)^(-1) other.T
If column is specified returns (scale) * (X.T X)^(-1)[column,column] if column is 0d
OR
(scale) * (X.T X)^(-1)[column][:,column] if column is 1d
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.structural.UnobservedComponentsResults.cov_params.html