statsmodels.tsa.vector_ar.dynamic.DynamicVAR
  - 
class statsmodels.tsa.vector_ar.dynamic.DynamicVAR(data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)[source]
- 
Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares     
| Parameters: |  
data (pandas.DataFrame) – 
lag_order (int, default 1) – 
window (int) – 
window_type ({'expanding', 'rolling'}) – 
min_periods (int or None) – Minimum number of observations to require in window, defaults to window size if None specified
trend ({'c', 'nc', 'ct', 'ctt'}) – TODO |  
| Returns: |  **Attributes**
coefs (Panel) – items : coefficient names major_axis : dates minor_axis : VAR equation names |  
 Methods   
| T() | Number of time periods in results |  
| coefs() | Return dynamic regression coefficients as Panel |  
| equations() |  |  
| forecast([steps]) | Produce dynamic forecast |  
| plot_forecast([steps, figsize]) | Plot h-step ahead forecasts against actual realizations of time series. |  
| r2() | Returns the r-squared values. |  
| resid() |  |  
 Attributes