class statsmodels.tsa.vector_ar.var_model.VARProcess(coefs, coefs_exog, sigma_u, names=None, _params_info=None) [source]
Class represents a known VAR(p) process
| Parameters: |
|
|---|---|
| Returns: | |
| Return type: |
**Attributes** |
acf([nlags]) | Compute theoretical autocovariance function |
acorr([nlags]) | Compute theoretical autocorrelation function |
forecast(y, steps[, exog_future]) | Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y |
forecast_cov(steps) | Compute theoretical forecast error variance matrices |
forecast_interval(y, steps[, alpha, exog_future]) | Construct forecast interval estimates assuming the y are Gaussian |
get_eq_index(name) | Return integer position of requested equation name |
intercept_longrun() | Long run intercept of stable VAR process |
is_stable([verbose]) | Determine stability based on model coefficients |
long_run_effects() | Compute long-run effect of unit impulse |
ma_rep([maxn]) | Compute MA(\(\infty\)) coefficient matrices |
mean() | Long run intercept of stable VAR process |
mse(steps) | Compute theoretical forecast error variance matrices |
orth_ma_rep([maxn, P]) | Compute orthogonalized MA coefficient matrices using P matrix such that \(\Sigma_u = PP^\prime\). |
plot_acorr([nlags, linewidth]) | Plot theoretical autocorrelation function |
plotsim([steps, offset, seed]) | Plot a simulation from the VAR(p) process for the desired number of steps |
simulate_var([steps, offset, seed]) | simulate the VAR(p) process for the desired number of steps |
to_vecm() |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARProcess.html