class statsmodels.tsa.vector_ar.var_model.VARProcess(coefs, coefs_exog, sigma_u, names=None, _params_info=None) [source]
Class represents a known VAR(p) process
| Parameters: | 
 | 
|---|---|
| Returns: | |
| Return type: | **Attributes** | 
| acf([nlags]) | Compute theoretical autocovariance function | 
| acorr([nlags]) | Compute theoretical autocorrelation function | 
| forecast(y, steps[, exog_future]) | Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y | 
| forecast_cov(steps) | Compute theoretical forecast error variance matrices | 
| forecast_interval(y, steps[, alpha, exog_future]) | Construct forecast interval estimates assuming the y are Gaussian | 
| get_eq_index(name) | Return integer position of requested equation name | 
| intercept_longrun() | Long run intercept of stable VAR process | 
| is_stable([verbose]) | Determine stability based on model coefficients | 
| long_run_effects() | Compute long-run effect of unit impulse | 
| ma_rep([maxn]) | Compute MA(\(\infty\)) coefficient matrices | 
| mean() | Long run intercept of stable VAR process | 
| mse(steps) | Compute theoretical forecast error variance matrices | 
| orth_ma_rep([maxn, P]) | Compute orthogonalized MA coefficient matrices using P matrix such that \(\Sigma_u = PP^\prime\). | 
| plot_acorr([nlags, linewidth]) | Plot theoretical autocorrelation function | 
| plotsim([steps, offset, seed]) | Plot a simulation from the VAR(p) process for the desired number of steps | 
| simulate_var([steps, offset, seed]) | simulate the VAR(p) process for the desired number of steps | 
| to_vecm() | 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARProcess.html