#include <nn_ops.h>
Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
if < 0, scale * features
otherwise.
To be used together with `initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN'). For correct dropout, use
tf.contrib.nn.alpha_dropout`.
See Self-Normalizing Neural Networks
Arguments:
Returns:
Output
: The activations tensor. Constructors and Destructors | |
---|---|
Selu(const ::tensorflow::Scope & scope, ::tensorflow::Input features) |
Public attributes | |
---|---|
activations | |
operation |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
::tensorflow::Output activations
Operation operation
Selu( const ::tensorflow::Scope & scope, ::tensorflow::Input features )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/selu