Generates parsing spec for tf.parse_example to be used with regressors.
tf.compat.v2.estimator.regressor_parse_example_spec( feature_columns, label_key, label_dtype=tf.dtypes.float32, label_default=None, label_dimension=1, weight_column=None )
If users keep data in tf.Example format, they need to call tf.parse_example with a proper feature spec. There are two main things that this utility helps:
DNNRegressor
to corresponding tf.parse_example spec. This utility encodes it by getting related information from users (key, dtype).Example output of parsing spec:
# Define features and transformations feature_b = tf.feature_column.numeric_column(...) feature_c_bucketized = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("feature_c"), ...) feature_a_x_feature_c = tf.feature_column.crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = [feature_b, feature_c_bucketized, feature_a_x_feature_c] parsing_spec = tf.estimator.regressor_parse_example_spec( feature_columns, label_key='my-label') # For the above example, regressor_parse_example_spec would return the dict: assert parsing_spec == { "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) "my-label" : parsing_ops.FixedLenFeature([1], dtype=tf.float32) }
Example usage with a regressor:
feature_columns = # define features via tf.feature_column estimator = DNNRegressor( hidden_units=[256, 64, 16], feature_columns=feature_columns, weight_column='example-weight', label_dimension=3) # This label configuration tells the regressor the following: # * weights are retrieved with key 'example-weight' # * label is a 3 dimension tensor with float32 dtype. # Input builders def input_fn_train(): # Returns a tuple of features and labels. features = tf.contrib.learn.read_keyed_batch_features( file_pattern=train_files, batch_size=batch_size, # creates parsing configuration for tf.parse_example features=tf.estimator.classifier_parse_example_spec( feature_columns, label_key='my-label', label_dimension=3, weight_column='example-weight'), reader=tf.RecordIOReader) labels = features.pop('my-label') return features, labels estimator.train(input_fn=input_fn_train)
Args | |
---|---|
feature_columns | An iterable containing all feature columns. All items should be instances of classes derived from _FeatureColumn . |
label_key | A string identifying the label. It means tf.Example stores labels with this key. |
label_dtype | A tf.dtype identifies the type of labels. By default it is tf.float32 . |
label_default | used as label if label_key does not exist in given tf.Example. By default default_value is none, which means tf.parse_example will error out if there is any missing label. |
label_dimension | Number of regression targets per example. This is the size of the last dimension of the labels and logits Tensor objects (typically, these have shape [batch_size, label_dimension] ). |
weight_column | A string or a NumericColumn created by tf.feature_column.numeric_column defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the features . If it is a NumericColumn , raw tensor is fetched by key weight_column.key , then weight_column.normalizer_fn is applied on it to get weight tensor. |
Returns | |
---|---|
A dict mapping each feature key to a FixedLenFeature or VarLenFeature value. |
Raises | |
---|---|
ValueError | If label is used in feature_columns . |
ValueError | If weight_column is used in feature_columns . |
ValueError | If any of the given feature_columns is not a _FeatureColumn instance. |
ValueError | If weight_column is not a NumericColumn instance. |
ValueError | if label_key is None. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/estimator/regressor_parse_example_spec