Creates parsing spec dictionary from input feature_columns.
tf.compat.v2.feature_column.make_parse_example_spec( feature_columns )
The returned dictionary can be used as arg 'features' in tf.io.parse_example
.
# Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.io.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns))
For the above example, make_parse_example_spec would return the dict:
{ "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) }
Args | |
---|---|
feature_columns | An iterable containing all feature columns. All items should be instances of classes derived from FeatureColumn . |
Returns | |
---|---|
A dict mapping each feature key to a FixedLenFeature or VarLenFeature value. |
Raises | |
---|---|
ValueError | If any of the given feature_columns is not a FeatureColumn instance. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/feature_column/make_parse_example_spec