Pads a tensor.
tf.compat.v2.pad( tensor, paddings, mode='CONSTANT', constant_values=0, name=None )
This operation pads a tensor
according to the paddings
you specify. paddings
is an integer tensor with shape [n, 2]
, where n is the rank of tensor
. For each dimension D of input
, paddings[D, 0]
indicates how many values to add before the contents of tensor
in that dimension, and paddings[D, 1]
indicates how many values to add after the contents of tensor
in that dimension. If mode
is "REFLECT" then both paddings[D, 0]
and paddings[D, 1]
must be no greater than tensor.dim_size(D) - 1
. If mode
is "SYMMETRIC" then both paddings[D, 0]
and paddings[D, 1]
must be no greater than tensor.dim_size(D)
.
The padded size of each dimension D of the output is:
paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]
t = tf.constant([[1, 2, 3], [4, 5, 6]]) paddings = tf.constant([[1, 1,], [2, 2]]) # 'constant_values' is 0. # rank of 't' is 2. tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0], # [0, 0, 1, 2, 3, 0, 0], # [0, 0, 4, 5, 6, 0, 0], # [0, 0, 0, 0, 0, 0, 0]] tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1], # [6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1]] tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2], # [2, 1, 1, 2, 3, 3, 2], # [5, 4, 4, 5, 6, 6, 5], # [5, 4, 4, 5, 6, 6, 5]]
Args | |
---|---|
tensor | A Tensor . |
paddings | A Tensor of type int32 . |
mode | One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive) |
constant_values | In "CONSTANT" mode, the scalar pad value to use. Must be same type as tensor . |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as tensor . |
Raises | |
---|---|
ValueError | When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC". |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/pad