Computes the theoretical and numeric Jacobian of f
.
tf.compat.v2.test.compute_gradient( f, x, delta=0.001 )
With y = f(x), computes the theoretical and numeric Jacobian dy/dx.
Args | |
---|---|
f | the function. |
x | a list arguments for the function |
delta | (optional) perturbation used to compute numeric Jacobian. |
Returns | |
---|---|
A pair of lists, where the first is a list of 2-d numpy arrays representing the theoretical Jacobians for each argument, and the second list is the numerical ones. Each 2-d array has "x_size" rows and "y_size" columns where "x_size" is the number of elements in the corresponding argument and "y_size" is the number of elements in f(x). |
Raises | |
---|---|
ValueError | If result is empty but the gradient is nonzero. |
ValueError | If x is not list, but any other type. |
@tf.function def test_func(x): return x*x theoretical, numerical = tf.test.compute_gradient(test_func, [1.0]) theoretical, numerical # ((array([[2.]], dtype=float32),), (array([[2.000004]], dtype=float32),))
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/test/compute_gradient