Cudnn implementation of LSTM layer.
tf.contrib.cudnn_rnn.CudnnLSTM( num_layers, num_units, input_mode=CUDNN_INPUT_LINEAR_MODE, direction=CUDNN_RNN_UNIDIRECTION, dropout=0.0, seed=None, dtype=tf.dtypes.float32, kernel_initializer=None, bias_initializer=None, name=None )
Args | |
---|---|
num_layers | the number of layers for the RNN model. |
num_units | the number of units within the RNN model. |
input_mode | indicate whether there is a linear projection between the input and the actual computation before the first layer. It can be 'linear_input', 'skip_input' or 'auto_select'. 'linear_input' (default) always applies a linear projection of input onto RNN hidden state. (standard RNN behavior). 'skip_input' is only allowed when input_size == num_units; 'auto_select' implies 'skip_input' when input_size == num_units; otherwise, it implies 'linear_input'. |
direction | the direction model that the model operates. Can be either 'unidirectional' or 'bidirectional' |
dropout | dropout rate, a number between [0, 1]. Dropout is applied between each layer (no dropout is applied for a model with a single layer). When set to 0, dropout is disabled. |
seed | the op seed used for initializing dropout. See tf.compat.v1.set_random_seed for behavior. |
dtype | tf.float16, tf.float32 or tf.float64 |
kernel_initializer | starting value to initialize the weight. |
bias_initializer | starting value to initialize the bias (default is all zeros). |
name | VariableScope for the created subgraph; defaults to class name. This only serves the default scope if later no scope is specified when invoking call(). |
Raises | |
---|---|
ValueError | if direction is invalid. Or dtype is not supported. |
Attributes | |
---|---|
canonical_bias_shapes | Shapes of Cudnn canonical bias tensors. |
canonical_weight_shapes | Shapes of Cudnn canonical weight tensors. |
direction | Returns unidirectional or bidirectional . |
graph | DEPRECATED FUNCTION |
input_mode | Input mode of first layer. Indicates whether there is a linear projection between the input and the actual computation before the first layer. It can be
|
input_size | |
num_dirs | |
num_layers | |
num_units | |
rnn_mode | Type of RNN cell used. |
saveable | |
scope_name |
state_shape
state_shape( batch_size )
Shape of Cudnn LSTM states.
Shape is a 2-element tuple. Each is [num_layers * num_dirs, batch_size, num_units] Args: batch_size: an int
Returns | |
---|---|
a tuple of python arrays. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/cudnn_rnn/CudnnLSTM