Returns an optimizer which clips gradients before applying them.
tf.contrib.estimator.clip_gradients_by_norm(
optimizer, clip_norm
)
optimizer = tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001)
optimizer = tf.contrib.estimator.clip_gradients_by_norm(
optimizer, clip_norm)
estimator = tf.estimator.DNNClassifier(
feature_columns=[...],
hidden_units=[1024, 512, 256],
optimizer=optimizer)
| Args | |
|---|---|
optimizer | An tf.Optimizer object to apply gradients. |
clip_norm | A 0-D (scalar) Tensor > 0. The clipping ratio. |
| Returns | |
|---|---|
A tf.Optimizer. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/estimator/clip_gradients_by_norm