View source on GitHub |
Depthwise separable 2D convolution.
Inherits From: Conv2D
tf.keras.layers.DepthwiseConv2D( kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1, data_format=None, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, bias_constraint=None, **kwargs )
Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial convolution (which acts on each input channel separately). The depth_multiplier
argument controls how many output channels are generated per input channel in the depthwise step.
Arguments | |
---|---|
kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
strides | An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding | one of 'valid' or 'same' (case-insensitive). |
depth_multiplier | The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier . |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be 'channels_last'. |
activation | Activation function to use. If you don't specify anything, no activation is applied (ie. 'linear' activation: a(x) = x ). |
use_bias | Boolean, whether the layer uses a bias vector. |
depthwise_initializer | Initializer for the depthwise kernel matrix. |
bias_initializer | Initializer for the bias vector. |
depthwise_regularizer | Regularizer function applied to the depthwise kernel matrix. |
bias_regularizer | Regularizer function applied to the bias vector. |
activity_regularizer | Regularizer function applied to the output of the layer (its 'activation'). |
depthwise_constraint | Constraint function applied to the depthwise kernel matrix. |
bias_constraint | Constraint function applied to the bias vector. |
4D tensor with shape: [batch, channels, rows, cols]
if data_format='channels_first' or 4D tensor with shape: [batch, rows, cols, channels]
if data_format='channels_last'.
4D tensor with shape: [batch, filters, new_rows, new_cols]
if data_format='channels_first' or 4D tensor with shape: [batch, new_rows, new_cols, filters]
if data_format='channels_last'. rows
and cols
values might have changed due to padding.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/layers/DepthwiseConv2D