| View source on GitHub |
Computes how often integer targets are in the top K predictions.
tf.keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name='sparse_top_k_categorical_accuracy', dtype=None
)
m = tf.keras.metrics.SparseTopKCategoricalAccuracy()
m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]])
print('Final result: ', m.result().numpy()) # Final result: 1.0
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs) model.compile( 'sgd', metrics=[tf.keras.metrics.SparseTopKCategoricalAccuracy()])
| Args | |
|---|---|
k | (Optional) Number of top elements to look at for computing accuracy. Defaults to 5. |
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
| Args | |
|---|---|
y_true | The ground truth values. |
y_pred | The predicted values. |
sample_weight | Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true. |
| Returns | |
|---|---|
| Update op. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/metrics/SparseTopKCategoricalAccuracy