| View source on GitHub |
Computes the squared hinge metric between y_true and y_pred.
tf.keras.metrics.SquaredHinge(
name='squared_hinge', dtype=None
)
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
For example, if y_true is [-1., 1., 1.], and y_pred is [0.6, -0.7, -0.5] the squared hinge metric value is 2.6.
m = tf.keras.metrics.SquaredHinge()
m.update_state([-1., 1., 1.], [0.6, -0.7, -0.5])
# result = max(0, 1-y_true * y_pred) = [1.6^2 + 1.7^2 + 1.5^2] / 3
print('Final result: ', m.result().numpy()) # Final result: 2.6
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.SquaredHinge()])
| Args | |
|---|---|
fn | The metric function to wrap, with signature fn(y_true, y_pred, **kwargs). |
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
**kwargs | The keyword arguments that are passed on to fn. |
reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
| Args | |
|---|---|
y_true | The ground truth values. |
y_pred | The predicted values. |
sample_weight | Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true. |
| Returns | |
|---|---|
| Update op. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/metrics/SquaredHinge