W3cubDocs

/TensorFlow 1.15

tf.keras.optimizers.schedules.PolynomialDecay

View source on GitHub

A LearningRateSchedule that uses a polynomial decay schedule.

Inherits From: LearningRateSchedule

Args
initial_learning_rate A scalar float32 or float64 Tensor or a Python number. The initial learning rate.
decay_steps A scalar int32 or int64 Tensor or a Python number. Must be positive. See the decay computation above.
end_learning_rate A scalar float32 or float64 Tensor or a Python number. The minimal end learning rate.
power A scalar float32 or float64 Tensor or a Python number. The power of the polynomial. Defaults to linear, 1.0.
cycle A boolean, whether or not it should cycle beyond decay_steps.
name String. Optional name of the operation. Defaults to 'PolynomialDecay'.

Methods

from_config

View source

Instantiates a LearningRateSchedule from its config.

Args
config Output of get_config().
Returns
A LearningRateSchedule instance.

get_config

View source

__call__

View source

Call self as a function.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/optimizers/schedules/PolynomialDecay