W3cubDocs

/TensorFlow 1.15

tf.math.reduce_sum

View source on GitHub

Computes the sum of elements across dimensions of a tensor. (deprecated arguments)

Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

For example:

x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x)  # 6
tf.reduce_sum(x, 0)  # [2, 2, 2]
tf.reduce_sum(x, 1)  # [3, 3]
tf.reduce_sum(x, 1, keepdims=True)  # [[3], [3]]
tf.reduce_sum(x, [0, 1])  # 6
Args
input_tensor The tensor to reduce. Should have numeric type.
axis The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
keepdims If true, retains reduced dimensions with length 1.
name A name for the operation (optional).
reduction_indices The old (deprecated) name for axis.
keep_dims Deprecated alias for keepdims.
Returns
The reduced tensor, of the same dtype as the input_tensor.

Numpy Compatibility

Equivalent to np.sum apart the fact that numpy upcast uint8 and int32 to int64 while tensorflow returns the same dtype as the input.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/math/reduce_sum