Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
tf.quantization.fake_quant_with_min_max_args( inputs, min=-6, max=6, num_bits=8, narrow_range=False, name=None )
Attributes [min; max]
define the clamping range for the inputs
data. inputs
values are quantized into the quantization range ([0; 2^num_bits - 1]
when narrow_range
is false and [1; 2^num_bits - 1]
when it is true) and then de-quantized and output as floats in [min; max]
interval. num_bits
is the bitwidth of the quantization; between 2 and 16, inclusive.
Before quantization, min
and max
values are adjusted with the following logic. It is suggested to have min <= 0 <= max
. If 0
is not in the range of values, the behavior can be unexpected: If 0 < min < max
: min_adj = 0
and max_adj = max - min
. If min < max < 0
: min_adj = min - max
and max_adj = 0
. If min <= 0 <= max
: scale = (max - min) / (2^num_bits - 1)
, min_adj = scale * round(min / scale)
and max_adj = max + min_adj - min
.
Quantization is called fake since the output is still in floating point.
Args | |
---|---|
inputs | A Tensor of type float32 . |
min | An optional float . Defaults to -6 . |
max | An optional float . Defaults to 6 . |
num_bits | An optional int . Defaults to 8 . |
narrow_range | An optional bool . Defaults to False . |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type float32 . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/quantization/fake_quant_with_min_max_args