TPU version of tf.compat.v1.feature_column.embedding_column
.
tf.tpu.experimental.embedding_column( categorical_column, dimension, combiner='mean', initializer=None, max_sequence_length=0, learning_rate_fn=None )
Note that the interface for tf.tpu.experimental.embedding_column
is different from that of tf.compat.v1.feature_column.embedding_column
: The following arguments are NOT supported: ckpt_to_load_from
, tensor_name_in_ckpt
, max_norm
and trainable
.
Use this function in place of tf.compat.v1.feature_column.embedding_column
when you want to use the TPU to accelerate your embedding lookups via TPU embeddings.
column = tf.feature_column.categorical_column_with_identity(...) tpu_column = tf.tpu.experimental.embedding_column(column, 10) ... def model_fn(features): dense_feature = tf.keras.layers.DenseFeature(tpu_column) embedded_feature = dense_feature(features) ... estimator = tf.estimator.tpu.TPUEstimator( model_fn=model_fn, ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( column=[tpu_column], ...))
Args | |
---|---|
categorical_column | A categorical column returned from categorical_column_with_identity , weighted_categorical_column , categorical_column_with_vocabulary_file , categorical_column_with_vocabulary_list , sequence_categorical_column_with_identity , sequence_categorical_column_with_vocabulary_file , sequence_categorical_column_with_vocabulary_list |
dimension | An integer specifying dimension of the embedding, must be > 0. |
combiner | A string specifying how to reduce if there are multiple entries in a single row for a non-sequence column. For more information, see tf.feature_column.embedding_column . |
initializer | A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.compat.v1.truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension) . |
max_sequence_length | An non-negative integer specifying the max sequence length. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. This must be positive for sequence features and 0 for non-sequence features. |
learning_rate_fn | A function that takes global step and returns learning rate for the embedding table. |
Returns | |
---|---|
A _TPUEmbeddingColumnV2 . |
Raises | |
---|---|
ValueError | if dimension not > 0. |
ValueError | if initializer is specified but not callable. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/tpu/experimental/embedding_column