Specifies additional arguments to be passed to the enclosing while_loop.
tf.autograph.experimental.set_loop_options( parallel_iterations=UNSPECIFIED, swap_memory=UNSPECIFIED, maximum_iterations=UNSPECIFIED, shape_invariants=UNSPECIFIED )
The parameters apply to and only to the immediately enclosing loop. It only has effect if the loop is staged as a TF while_loop; otherwise the parameters have no effect.
@tf.function(autograph=True) def f(): n = 0 for i in tf.range(10): tf.autograph.experimental.set_loop_options(maximum_iterations=3) n += 1 return n
@tf.function(autograph=True) def f(): v = tf.constant((0,)) for i in tf.range(3): tf.autograph.experimental.set_loop_options( shape_invariants=[(v, tf.TensorShape([None]))] ) v = tf.concat((v, [i]), 0) return v
Also see tf.while_loop.
Args | |
---|---|
parallel_iterations | The maximum number of iterations allowed to run in parallel at any given time. Note that this does not guarantee parallel execution. |
swap_memory | Whether to store intermediate values needed for gradients on the CPU instead of GPU. |
maximum_iterations | Allows limiting the total number of iterations executed by the loop. |
shape_invariants | Allows controlling the argument with the same name passed to tf.while_loop. Unlike tf.while_loop, this is a list of (tensor, shape) pairs. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/autograph/experimental/set_loop_options