Dirichlet-Multinomial compound distribution.
Inherits From: Distribution
tf.compat.v1.distributions.DirichletMultinomial( total_count, concentration, validate_args=False, allow_nan_stats=True, name='DirichletMultinomial' )
The Dirichlet-Multinomial distribution is parameterized by a (batch of) length-K
concentration
vectors (K > 1
) and a total_count
number of trials, i.e., the number of trials per draw from the DirichletMultinomial. It is defined over a (batch of) length-K
vector counts
such that tf.reduce_sum(counts, -1) = total_count
. The Dirichlet-Multinomial is identically the Beta-Binomial distribution when K = 2
.
The Dirichlet-Multinomial is a distribution over K
-class counts, i.e., a length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}]
.
The probability mass function (pmf) is,
pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z Z = Beta(alpha) / N!
where:
concentration = alpha = [alpha_0, ..., alpha_{K-1}]
, alpha_j > 0
,total_count = N
, N
a positive integer,N!
is N
factorial, and,Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)
is the multivariate beta function, and,Gamma
is the gamma function.Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.
probs = [p_0,...,p_{K-1}] ~ Dir(concentration)
counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)
The last concentration
dimension parametrizes a single Dirichlet-Multinomial distribution. When calling distribution functions (e.g., dist.prob(counts)
), concentration
, total_count
and counts
are broadcast to the same shape. The last dimension of counts
corresponds single Dirichlet-Multinomial distributions.
Distribution parameters are automatically broadcast in all functions; see examples for details.
The number of classes, K
, must not exceed:
self.dtype
, i.e., 2**(mantissa_bits+1)
(IEE754),Tensor
index, i.e., 2**31-1
.In other words,
K <= min(2**31-1, { tf.float16: 2**11, tf.float32: 2**24, tf.float64: 2**53 }[param.dtype])
Note: This condition is validated only when self.validate_args = True
.
alpha = [1., 2., 3.] n = 2. dist = DirichletMultinomial(n, alpha)
Creates a 3-class distribution, with the 3rd class is most likely to be drawn. The distribution functions can be evaluated on counts.
# counts same shape as alpha. counts = [0., 0., 2.] dist.prob(counts) # Shape [] # alpha will be broadcast to [[1., 2., 3.], [1., 2., 3.]] to match counts. counts = [[1., 1., 0.], [1., 0., 1.]] dist.prob(counts) # Shape [2] # alpha will be broadcast to shape [5, 7, 3] to match counts. counts = [[...]] # Shape [5, 7, 3] dist.prob(counts) # Shape [5, 7]
Creates a 2-batch of 3-class distributions.
alpha = [[1., 2., 3.], [4., 5., 6.]] # Shape [2, 3] n = [3., 3.] dist = DirichletMultinomial(n, alpha) # counts will be broadcast to [[2., 1., 0.], [2., 1., 0.]] to match alpha. counts = [2., 1., 0.] dist.prob(counts) # Shape [2]
Args | |
---|---|
total_count | Non-negative floating point tensor, whose dtype is the same as concentration . The shape is broadcastable to [N1,..., Nm] with m >= 0 . Defines this as a batch of N1 x ... x Nm different Dirichlet multinomial distributions. Its components should be equal to integer values. |
concentration | Positive floating point tensor, whose dtype is the same as n with shape broadcastable to [N1,..., Nm, K] m >= 0 . Defines this as a batch of N1 x ... x Nm different K class Dirichlet multinomial distributions. |
validate_args | Python bool , default False . When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. |
allow_nan_stats | Python bool , default True . When True , statistics (e.g., mean, mode, variance) use the value "NaN " to indicate the result is undefined. When False , an exception is raised if one or more of the statistic's batch members are undefined. |
name | Python str name prefixed to Ops created by this class. |
Attributes | |
---|---|
allow_nan_stats | Python bool describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape | Shape of a single sample from a single event index as a TensorShape . May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
concentration | Concentration parameter; expected prior counts for that coordinate. |
dtype | The DType of Tensor s handled by this Distribution . |
event_shape | Shape of a single sample from a single batch as a TensorShape . May be partially defined or unknown. |
name | Name prepended to all ops created by this Distribution . |
parameters | Dictionary of parameters used to instantiate this Distribution . |
reparameterization_type | Describes how samples from the distribution are reparameterized. Currently this is one of the static instances |
total_concentration | Sum of last dim of concentration parameter. |
total_count | Number of trials used to construct a sample. |
validate_args | Python bool indicating possibly expensive checks are enabled. |
batch_shape_tensor
batch_shape_tensor( name='batch_shape_tensor' )
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
batch_shape | Tensor . |
cdf
cdf( value, name='cdf' )
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
copy
copy( **override_parameters_kwargs )
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original initialization arguments.
Args | |
---|---|
**override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution | A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs) . |
covariance
covariance( name='covariance' )
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance
shall return a (batch of) matrices under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices, 0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function mapping indices of this distribution's event dimensions to indices of a length-k'
vector.
Additional documentation from DirichletMultinomial
:
The covariance for each batch member is defined as the following:
Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) * (n + alpha_0) / (1 + alpha_0)
where concentration = alpha
and total_concentration = alpha_0 = sum_j alpha_j
.
The covariance between elements in a batch is defined as:
Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 * (n + alpha_0) / (1 + alpha_0)
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
covariance | Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape) . |
cross_entropy
cross_entropy( other, name='cross_entropy' )
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by Q
. Assuming P, Q
are absolutely continuous with respect to one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon) cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cross_entropy | self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy. |
entropy
entropy( name='entropy' )
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor( name='event_shape_tensor' )
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
event_shape | Tensor . |
is_scalar_batch
is_scalar_batch( name='is_scalar_batch' )
Indicates that batch_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_batch | bool scalar Tensor . |
is_scalar_event
is_scalar_event( name='is_scalar_event' )
Indicates that event_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_event | bool scalar Tensor . |
kl_divergence
kl_divergence( other, name='kl_divergence' )
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by q
. Assuming p, q
are absolutely continuous with respect to reference measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))] = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x) = H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shanon) cross entropy, and H[.]
denotes (Shanon) entropy.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
kl_divergence | self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence. |
log_cdf
log_cdf( value, name='log_cdf' )
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
when x << -1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
logcdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
log_prob
log_prob( value, name='log_prob' )
Log probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts, value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after sampling self.total_count
draws from this Dirichlet-Multinomial distribution, the number of draws falling in class j
is n_j
. Since this definition is exchangeable; different sequences have the same counts so the probability includes a combinatorial coefficient.
Note:value
must be a non-negative tensor with dtypeself.dtype
, have no fractional components, and such thattf.reduce_sum(value, -1) = self.total_count
. Its shape must be broadcastable withself.concentration
andself.total_count
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
log_survival_function
log_survival_function( value, name='log_survival_function' )
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
mean
mean( name='mean' )
Mean.
mode
mode( name='mode' )
Mode.
param_shapes
@classmethod param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape | Tensor or python list/tuple. Desired shape of a call to sample() . |
name | name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes. |
param_static_shapes
@classmethod param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
. Assumes that the sample's shape is known statically.
Subclasses should override class method _param_shapes
to return constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape | TensorShape or python list/tuple. Desired shape of a call to sample() . |
Returns | |
---|---|
dict of parameter name to TensorShape . |
Raises | |
---|---|
ValueError | if sample_shape is a TensorShape and is not fully defined. |
prob
prob( value, name='prob' )
Probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts, value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after sampling self.total_count
draws from this Dirichlet-Multinomial distribution, the number of draws falling in class j
is n_j
. Since this definition is exchangeable; different sequences have the same counts so the probability includes a combinatorial coefficient.
Note:value
must be a non-negative tensor with dtypeself.dtype
, have no fractional components, and such thattf.reduce_sum(value, -1) = self.total_count
. Its shape must be broadcastable withself.concentration
andself.total_count
.
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
quantile
quantile( value, name='quantile' )
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
quantile | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
sample
sample( sample_shape=(), seed=None, name='sample' )
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
Args | |
---|---|
sample_shape | 0D or 1D int32 Tensor . Shape of the generated samples. |
seed | Python integer seed for RNG |
name | name to give to the op. |
Returns | |
---|---|
samples | a Tensor with prepended dimensions sample_shape . |
stddev
stddev( name='stddev' )
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
stddev | Floating-point Tensor with shape identical to batch_shape + event_shape , i.e., the same shape as self.mean() . |
survival_function
survival_function( value, name='survival_function' )
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x).
Args | |
---|---|
value | float or double Tensor . |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype . |
variance
variance( name='variance' )
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
variance | Floating-point Tensor with shape identical to batch_shape + event_shape , i.e., the same shape as self.mean() . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/distributions/DirichletMultinomial