Computes sigmoid cross entropy given logits
.
tf.compat.v1.nn.sigmoid_cross_entropy_with_logits( _sentinel=None, labels=None, logits=None, name=None )
Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
For brevity, let x = logits
, z = labels
. The logistic loss is
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x + log(1 + exp(-x)) = x - x * z + log(1 + exp(-x))
For x < 0, to avoid overflow in exp(-x), we reformulate the above
x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x)) = - x * z + log(1 + exp(x))
Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation
max(x, 0) - x * z + log(1 + exp(-abs(x)))
logits
and labels
must have the same type and shape.
Args | |
---|---|
_sentinel | Used to prevent positional parameters. Internal, do not use. |
labels | A Tensor of the same type and shape as logits . |
logits | A Tensor of type float32 or float64 . |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of the same shape as logits with the componentwise logistic losses. |
Raises | |
---|---|
ValueError | If logits and labels do not have the same shape. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/nn/sigmoid_cross_entropy_with_logits