Optimization parameters for Adagrad with TPU embeddings.
tf.compat.v1.tpu.experimental.AdagradParameters( learning_rate, initial_accumulator=0.1, use_gradient_accumulation=True, clip_weight_min=None, clip_weight_max=None, weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None )
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the optimization_parameters
argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator( ... embedding_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( ... optimization_parameters=tf.tpu.experimental.AdagradParameters(0.1), ...))
Args | |
---|---|
learning_rate | used for updating embedding table. |
initial_accumulator | initial accumulator for Adagrad. |
use_gradient_accumulation | setting this to False makes embedding gradients calculation less accurate but faster. Please see optimization_parameters.proto for details. for details. |
clip_weight_min | the minimum value to clip by; None means -infinity. |
clip_weight_max | the maximum value to clip by; None means +infinity. |
weight_decay_factor | amount of weight decay to apply; None means that the weights are not decayed. |
multiply_weight_decay_factor_by_learning_rate | if true, weight_decay_factor is multiplied by the current learning rate. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/tpu/experimental/AdagradParameters