Optimization parameters for Ftrl with TPU embeddings.
tf.compat.v1.tpu.experimental.FtrlParameters( learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_gradient_accumulation=True, clip_weight_min=None, clip_weight_max=None, weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None )
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the optimization_parameters
argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator( ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( ... optimization_parameters=tf.tpu.experimental.FtrlParameters(0.1), ...))
Args | |
---|---|
learning_rate | a floating point value. The learning rate. |
learning_rate_power | A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate. See section 3.1 in the paper. |
initial_accumulator_value | The starting value for accumulators. Only zero or positive values are allowed. |
l1_regularization_strength | A float value, must be greater than or equal to zero. |
l2_regularization_strength | A float value, must be greater than or equal to zero. |
use_gradient_accumulation | setting this to False makes embedding gradients calculation less accurate but faster. Please see optimization_parameters.proto for details. for details. |
clip_weight_min | the minimum value to clip by; None means -infinity. |
clip_weight_max | the maximum value to clip by; None means +infinity. |
weight_decay_factor | amount of weight decay to apply; None means that the weights are not decayed. |
multiply_weight_decay_factor_by_learning_rate | if true, weight_decay_factor is multiplied by the current learning rate. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/tpu/experimental/FtrlParameters