W3cubDocs

/TensorFlow 2.3

tf.compat.v1.train.init_from_checkpoint

Replaces tf.Variable initializers so they load from a checkpoint file.

Values are not loaded immediately, but when the initializer is run (typically by running a tf.compat.v1.global_variables_initializer op).

Note: This overrides default initialization ops of specified variables and redefines dtype.

Assignment map supports following syntax:

  • 'checkpoint_scope_name/': 'scope_name/' - will load all variables in current scope_name from checkpoint_scope_name with matching tensor names.
  • 'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name' - will initialize scope_name/variable_name variable from checkpoint_scope_name/some_other_variable.
  • 'scope_variable_name': variable - will initialize given tf.Variable object with tensor 'scope_variable_name' from the checkpoint.
  • 'scope_variable_name': list(variable) - will initialize list of partitioned variables with tensor 'scope_variable_name' from the checkpoint.
  • '/': 'scope_name/' - will load all variables in current scope_name from checkpoint's root (e.g. no scope).

Supports loading into partitioned variables, which are represented as '<variable>/part_<part #>'.

Example:

# Say, '/tmp/model.ckpt' has the following tensors:
#  -- name='old_scope_1/var1', shape=[20, 2]
#  -- name='old_scope_1/var2', shape=[50, 4]
#  -- name='old_scope_2/var3', shape=[100, 100]

# Create new model's variables
with tf.compat.v1.variable_scope('new_scope_1'):
  var1 = tf.compat.v1.get_variable('var1', shape=[20, 2],
                         initializer=tf.compat.v1.zeros_initializer())
with tf.compat.v1.variable_scope('new_scope_2'):
  var2 = tf.compat.v1.get_variable('var2', shape=[50, 4],
                         initializer=tf.compat.v1.zeros_initializer())
  # Partition into 5 variables along the first axis.
  var3 = tf.compat.v1.get_variable(name='var3', shape=[100, 100],
                         initializer=tf.compat.v1.zeros_initializer(),
                         partitioner=lambda shape, dtype: [5, 1])

# Initialize all variables in `new_scope_1` from `old_scope_1`.
init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/': 'new_scope_1'})

# Use names to specify which variables to initialize from checkpoint.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': 'new_scope_1/var1',
                      'old_scope_1/var2': 'new_scope_2/var2'})

# Or use tf.Variable objects to identify what to initialize.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': var1,
                      'old_scope_1/var2': var2})

# Initialize partitioned variables using variable's name
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': 'new_scope_2/var3'})

# Or specify the list of tf.Variable objects.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': var3._get_variable_list()})

Args
ckpt_dir_or_file Directory with checkpoints file or path to checkpoint.
assignment_map Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph).
Raises
ValueError If missing variables in current graph, or if missing checkpoints or tensors in checkpoints.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/train/init_from_checkpoint