An in-process tf.data service dispatch server.
tf.data.experimental.service.DispatchServer( port, protocol=None, start=True )
A tf.data.experimental.service.DispatchServer
coordinates a cluster of tf.data.experimental.service.WorkerServer
s. When the workers start, they register themselves with the dispatcher.
dispatcher = tf.data.experimental.service.DispatchServer(port=0) dispatcher_address = dispatcher.target.split("://")[1] worker = tf.data.experimental.service.WorkerServer( port=0, dispatcher_address=dispatcher_address) dataset = tf.data.Dataset.range(10) dataset = dataset.apply(tf.data.experimental.service.distribute( processing_mode="parallel_epochs", service=dispatcher.target)) print(list(dataset.as_numpy_iterator())) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data dispatch process, use join() to block indefinitely after starting up the server.
dispatcher = tf.data.experimental.service.DispatchServer(port=5050) dispatcher.join()
Args | |
---|---|
port | Specifies the port to bind to. |
protocol | (Optional.) Specifies the protocol to be used by the server. Acceptable values include "grpc", "grpc+local" . Defaults to "grpc" . |
start | (Optional.) Boolean, indicating whether to start the server after creating it. Defaults to True . |
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while creating the TensorFlow server. |
Attributes | |
---|---|
target | Returns a target that can be used to connect to the server. dispatcher = tf.data.experimental.service.DispatchServer(port=0) dataset = tf.data.Dataset.range(10) dataset = dataset.apply(tf.data.experimental.service.distribute( processing_mode="parallel_epochs", service=dispatcher.target)) The returned string will be in the form protocol://address, e.g. "grpc://localhost:5050". |
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated dispatch process.
dispatcher = tf.data.experimental.service.DispatchServer(port=5050) dispatcher.join()
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while joining the server. |
start
start()
Starts this server.
dispatcher = tf.data.experimental.service.DispatchServer(port=0, start=False) dispatcher.start()
Raises | |
---|---|
tf.errors.OpError | Or one of its subclasses if an error occurs while starting the server. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/data/experimental/service/DispatchServer