View source on GitHub |
A distribution strategy for running on a single device.
Inherits From: Strategy
tf.distribute.OneDeviceStrategy( device )
Using this strategy will place any variables created in its scope on the specified device. Input distributed through this strategy will be prefetched to the specified device. Moreover, any functions called via strategy.run
will also be placed on the specified device as well.
Typical usage of this strategy could be testing your code with the tf.distribute.Strategy API before switching to other strategies which actually distribute to multiple devices/machines.
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") with strategy.scope(): v = tf.Variable(1.0) print(v.device) # /job:localhost/replica:0/task:0/device:GPU:0 def step_fn(x): return x * 2 result = 0 for i in range(10): result += strategy.run(step_fn, args=(i,)) print(result) # 90
Args | |
---|---|
device | Device string identifier for the device on which the variables should be placed. See class docs for more details on how the device is used. Examples: "/cpu:0", "/gpu:0", "/device:CPU:0", "/device:GPU:0" |
Attributes | |
---|---|
cluster_resolver | Returns the cluster resolver associated with this strategy. In general, when using a multi-worker Strategies that intend to have an associated Single-worker strategies usually do not have a The os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': ["localhost:12345", "localhost:23456"], 'ps': ["localhost:34567"] }, 'task': {'type': 'worker', 'index': 0} }) # This implicitly uses TF_CONFIG for the cluster and current task info. strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() ... if strategy.cluster_resolver.task_type == 'worker': # Perform something that's only applicable on workers. Since we set this # as a worker above, this block will run on this particular instance. elif strategy.cluster_resolver.task_type == 'ps': # Perform something that's only applicable on parameter servers. Since we # set this as a worker above, this block will not run on this particular # instance. For more information, please see |
extended | tf.distribute.StrategyExtended with additional methods. |
num_replicas_in_sync | Returns number of replicas over which gradients are aggregated. |
experimental_assign_to_logical_device
experimental_assign_to_logical_device( tensor, logical_device_id )
Adds annotation that tensor
will be assigned to a logical device.
Note: This API is only supported in TPUStrategy for now. This adds an annotation totensor
specifying that operations ontensor
will be invoked on logical core device idlogical_device_id
. When model parallelism is used, the default behavior is that all ops are placed on zero-th logical device.
# Initializing TPU system with 2 logical devices and 4 replicas. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 1, 1, 2], num_replicas=4) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): output = tf.add(inputs, inputs) # Add operation will be executed on logical device 0. output = strategy.experimental_assign_to_logical_device(output, 0) return output strategy.run(step_fn, args=(next(iterator),))
Args | |
---|---|
tensor | Input tensor to annotate. |
logical_device_id | Id of the logical core to which the tensor will be assigned. |
Raises | |
---|---|
ValueError | The logical device id presented is not consistent with total number of partitions specified by the device assignment. |
Returns | |
---|---|
Annotated tensor with idential value as tensor . |
experimental_distribute_dataset
experimental_distribute_dataset( dataset )
Distributes a tf.data.Dataset instance provided via dataset.
In this case, there is only one device, so this is only a thin wrapper around the input dataset. It will, however, prefetch the input data to the specified device. The returned distributed dataset can be iterated over similar to how regular datasets can.
Note: Currently, the user cannot add any more transformations to a distributed dataset.
strategy = tf.distribute.OneDeviceStrategy() dataset = tf.data.Dataset.range(10).batch(2) dist_dataset = strategy.experimental_distribute_dataset(dataset) for x in dist_dataset: print(x) # [0, 1], [2, 3],...
Args: dataset: tf.data.Dataset
to be prefetched to device.
Returns | |
---|---|
A "distributed Dataset " that the caller can iterate over. |
experimental_distribute_datasets_from_function
experimental_distribute_datasets_from_function( dataset_fn )
Distributes tf.data.Dataset
instances created by calls to dataset_fn
.
dataset_fn
will be called once for each worker in the strategy. In this case, we only have one worker and one device so dataset_fn
is called once.
The dataset_fn
should take an tf.distribute.InputContext
instance where information about batching and input replication can be accessed:
def dataset_fn(input_context): batch_size = input_context.get_per_replica_batch_size(global_batch_size) d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size) return d.shard( input_context.num_input_pipelines, input_context.input_pipeline_id) inputs = strategy.experimental_distribute_datasets_from_function(dataset_fn) for batch in inputs: replica_results = strategy.run(replica_fn, args=(batch,))
Args | |
---|---|
dataset_fn | A function taking a tf.distribute.InputContext instance and returning a tf.data.Dataset . |
Returns | |
---|---|
A "distributed Dataset ", which the caller can iterate over like regular datasets. |
experimental_distribute_values_from_function
experimental_distribute_values_from_function( value_fn )
Generates tf.distribute.DistributedValues
from value_fn
.
This function is to generate tf.distribute.DistributedValues
to pass into run
, reduce
, or other methods that take distributed values when not using datasets.
Args | |
---|---|
value_fn | The function to run to generate values. It is called for each replica with tf.distribute.ValueContext as the sole argument. It must return a Tensor or a type that can be converted to a Tensor. |
Returns | |
---|---|
A tf.distribute.DistributedValues containing a value for each replica. |
strategy = tf.distribute.MirroredStrategy() def value_fn(ctx): return tf.constant(1.) distributed_values = ( strategy.experimental_distribute_values_from_function( value_fn)) local_result = strategy.experimental_local_results(distributed_values) local_result (<tf.Tensor: shape=(), dtype=float32, numpy=1.0>,)
strategy = tf.distribute.MirroredStrategy() array_value = np.array([3., 2., 1.]) def value_fn(ctx): return array_value[ctx.replica_id_in_sync_group] distributed_values = ( strategy.experimental_distribute_values_from_function( value_fn)) local_result = strategy.experimental_local_results(distributed_values) local_result (3.0,)
strategy = tf.distribute.MirroredStrategy() def value_fn(ctx): return ctx.num_replicas_in_sync distributed_values = ( strategy.experimental_distribute_values_from_function( value_fn)) local_result = strategy.experimental_local_results(distributed_values) local_result (1,)
strategy = tf.distribute.TPUStrategy() worker_devices = strategy.extended.worker_devices multiple_values = [] for i in range(strategy.num_replicas_in_sync): with tf.device(worker_devices[i]): multiple_values.append(tf.constant(1.0)) def value_fn(ctx): return multiple_values[ctx.replica_id_in_sync_group] distributed_values = strategy. experimental_distribute_values_from_function( value_fn)
experimental_local_results
experimental_local_results( value )
Returns the list of all local per-replica values contained in value
.
In OneDeviceStrategy
, the value
is always expected to be a single value, so the result is just the value in a tuple.
Args | |
---|---|
value | A value returned by experimental_run() , run() , extended.call_for_each_replica() , or a variable created in scope . |
Returns | |
---|---|
A tuple of values contained in value . If value represents a single value, this returns (value,). |
experimental_make_numpy_dataset
experimental_make_numpy_dataset( numpy_input )
Makes a tf.data.Dataset
from a numpy array. (deprecated)
This avoids adding numpy_input
as a large constant in the graph, and copies the data to the machine or machines that will be processing the input.
Note that you will likely need to use experimental_distribute_dataset
with the returned dataset to further distribute it with the strategy.
strategy = tf.distribute.MirroredStrategy() numpy_input = np.ones([10], dtype=np.float32) dataset = strategy.experimental_make_numpy_dataset(numpy_input) dataset <TensorSliceDataset shapes: (), types: tf.float32> dataset = dataset.batch(2) dist_dataset = strategy.experimental_distribute_dataset(dataset)
Args | |
---|---|
numpy_input | a nest of NumPy input arrays that will be converted into a dataset. Note that the NumPy arrays are stacked, as that is normal tf.data.Dataset behavior. |
Returns | |
---|---|
A tf.data.Dataset representing numpy_input . |
experimental_replicate_to_logical_devices
experimental_replicate_to_logical_devices( tensor )
Adds annotation that tensor
will be replicated to all logical devices.
Note: This API is only supported in TPUStrategy for now. This adds an annotation to tensortensor
specifying that operations ontensor
will be invoked on all logical devices.
# Initializing TPU system with 2 logical devices and 4 replicas. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 1, 1, 2], num_replicas=4) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): images, labels = inputs images = strategy.experimental_split_to_logical_devices( inputs, [1, 2, 4, 1]) # model() function will be executed on 8 logical devices with `inputs` # split 2 * 4 ways. output = model(inputs) # For loss calculation, all logical devices share the same logits # and labels. labels = strategy.experimental_replicate_to_logical_devices(labels) output = strategy.experimental_replicate_to_logical_devices(output) loss = loss_fn(labels, output) return loss strategy.run(step_fn, args=(next(iterator),))
Args: tensor: Input tensor to annotate.
Returns | |
---|---|
Annotated tensor with idential value as tensor . |
experimental_split_to_logical_devices
experimental_split_to_logical_devices( tensor, partition_dimensions )
Adds annotation that tensor
will be split across logical devices.
Note: This API is only supported in TPUStrategy for now. This adds an annotation to tensortensor
specifying that operations ontensor
will be be split among multiple logical devices. Tensortensor
will be split across dimensions specified bypartition_dimensions
. The dimensions oftensor
must be divisible by corresponding value inpartition_dimensions
.
For example, for system with 8 logical devices, if tensor
is an image tensor with shape (batch_size, width, height, channel) and partition_dimensions
is [1, 2, 4, 1], then tensor
will be split 2 in width dimension and 4 way in height dimension and the split tensor values will be fed into 8 logical devices.
# Initializing TPU system with 8 logical devices and 1 replica. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 2, 2, 2], num_replicas=1) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): inputs = strategy.experimental_split_to_logical_devices( inputs, [1, 2, 4, 1]) # model() function will be executed on 8 logical devices with `inputs` # split 2 * 4 ways. output = model(inputs) return output strategy.run(step_fn, args=(next(iterator),))
Args: tensor: Input tensor to annotate. partition_dimensions: An unnested list of integers with the size equal to rank of tensor
specifying how tensor
will be partitioned. The product of all elements in partition_dimensions
must be equal to the total number of logical devices per replica.
Raises | |
---|---|
ValueError | 1) If the size of partition_dimensions does not equal to rank of |
Returns | |
---|---|
Annotated tensor with idential value as tensor . |
reduce
reduce( reduce_op, value, axis )
Reduce value
across replicas.
In OneDeviceStrategy
, there is only one replica, so if axis=None, value is simply returned. If axis is specified as something other than None, such as axis=0, value is reduced along that axis and returned.
t = tf.range(10) result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=None).numpy() # result: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=0).numpy() # result: 45
Args | |
---|---|
reduce_op | A tf.distribute.ReduceOp value specifying how values should be combined. |
value | A "per replica" value, e.g. returned by run to be combined into a single tensor. |
axis | Specifies the dimension to reduce along within each replica's tensor. Should typically be set to the batch dimension, or None to only reduce across replicas (e.g. if the tensor has no batch dimension). |
Returns | |
---|---|
A Tensor . |
run
run( fn, args=(), kwargs=None, options=None )
Run fn
on each replica, with the given arguments.
In OneDeviceStrategy
, fn
is simply called within a device scope for the given device, with the provided arguments.
Args | |
---|---|
fn | The function to run. The output must be a tf.nest of Tensor s. |
args | (Optional) Positional arguments to fn . |
kwargs | (Optional) Keyword arguments to fn . |
options | (Optional) An instance of tf.distribute.RunOptions specifying the options to run fn . |
Returns | |
---|---|
Return value from running fn . |
scope
scope()
Returns a context manager selecting this Strategy as current.
Inside a with strategy.scope():
code block, this thread will use a variable creator set by strategy
, and will enter its "cross-replica context".
In OneDeviceStrategy
, all variables created inside strategy.scope()
will be on device
specified at strategy construction time. See example in the docs for this class.
Returns | |
---|---|
A context manager to use for creating variables with this strategy. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/OneDeviceStrategy