View source on GitHub |
Returns a column for performing crosses of categorical features.
tf.feature_column.crossed_column( keys, hash_bucket_size, hash_key=None )
Crossed features will be hashed according to hash_bucket_size
. Conceptually, the transformation can be thought of as: Hash(cartesian product of features) % hash_bucket_size
For example, if the input features are:
shape = [2, 2] { [0, 0]: "a" [1, 0]: "b" [1, 1]: "c" }
shape = [2, 1] { [0, 0]: "d" [1, 0]: "e" }
then crossed feature will look like:
shape = [2, 2] { [0, 0]: Hash64("d", Hash64("a")) % hash_bucket_size [1, 0]: Hash64("e", Hash64("b")) % hash_bucket_size [1, 1]: Hash64("e", Hash64("c")) % hash_bucket_size }
Here is an example to create a linear model with crosses of string features:
keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
You could also use vocabulary lookup before crossing:
keywords = categorical_column_with_vocabulary_file( 'keywords', '/path/to/vocabulary/file', vocabulary_size=1K) keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
If an input feature is of numeric type, you can use categorical_column_with_identity
, or bucketized_column
, as in the example:
# vertical_id is an integer categorical feature. vertical_id = categorical_column_with_identity('vertical_id', 10K) price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) columns = [vertical_id_x_price, ...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
To use crossed column in DNN model, you need to add it in an embedding column as in this example:
vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) vertical_id_x_price_embedded = embedding_column(vertical_id_x_price, 10) dense_tensor = input_layer(features, [vertical_id_x_price_embedded, ...])
Args | |
---|---|
keys | An iterable identifying the features to be crossed. Each element can be either:
|
hash_bucket_size | An int > 1. The number of buckets. |
hash_key | Specify the hash_key that will be used by the FingerprintCat64 function to combine the crosses fingerprints on SparseCrossOp (optional). |
Returns | |
---|---|
A CrossedColumn . |
Raises | |
---|---|
ValueError | If len(keys) < 2 . |
ValueError | If any of the keys is neither a string nor CategoricalColumn . |
ValueError | If any of the keys is HashedCategoricalColumn . |
ValueError | If hash_bucket_size < 1 . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/feature_column/crossed_column