View source on GitHub |
Represents multi-hot representation of given categorical column.
tf.feature_column.indicator_column( categorical_column )
For DNN model, indicator_column
can be used to wrap any categorical_column_*
(e.g., to feed to DNN). Consider to Use embedding_column
if the number of buckets/unique(values) are large.
For Wide (aka linear) model, indicator_column
is the internal representation for categorical column when passing categorical column directly (as any element in feature_columns) to linear_model
. See linear_model
for details.
name = indicator_column(categorical_column_with_vocabulary_list( 'name', ['bob', 'george', 'wanda'])) columns = [name, ...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"] dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"] dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"]
Args | |
---|---|
categorical_column | A CategoricalColumn which is created by categorical_column_with_* or crossed_column functions. |
Returns | |
---|---|
An IndicatorColumn . |
Raises | |
---|---|
ValueError | If categorical_column is not CategoricalColumn type. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/feature_column/indicator_column