View source on GitHub |
Gather slices from params
into a Tensor with shape specified by indices
.
tf.gather_nd( params, indices, batch_dims=0, name=None )
indices
is an K-dimensional integer tensor, best thought of as a (K-1)-dimensional tensor of indices into params
, where each element defines a slice of params
:
output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]
Whereas in tf.gather
indices
defines slices into the first dimension of params
, in tf.gather_nd
, indices
defines slices into the first N
dimensions of params
, where N = indices.shape[-1]
.
The last dimension of indices
can be at most the rank of params
:
indices.shape[-1] <= params.rank
The last dimension of indices
corresponds to elements (if indices.shape[-1] == params.rank
) or slices (if indices.shape[-1] < params.rank
) along dimension indices.shape[-1]
of params
. The output tensor has shape
indices.shape[:-1] + params.shape[indices.shape[-1]:]
Additionally both 'params' and 'indices' can have M leading batch dimensions that exactly match. In this case 'batch_dims' must be M.
Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value.
Some examples below.
Simple indexing into a matrix:
indices = [[0, 0], [1, 1]] params = [['a', 'b'], ['c', 'd']] output = ['a', 'd']
Slice indexing into a matrix:
indices = [[1], [0]] params = [['a', 'b'], ['c', 'd']] output = [['c', 'd'], ['a', 'b']]
Indexing into a 3-tensor:
indices = [[1]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['a1', 'b1'], ['c1', 'd1']]] indices = [[0, 1], [1, 0]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0', 'd0'], ['a1', 'b1']] indices = [[0, 0, 1], [1, 0, 1]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = ['b0', 'b1']
The examples below are for the case when only indices have leading extra dimensions. If both 'params' and 'indices' have leading batch dimensions, use the 'batch_dims' parameter to run gather_nd in batch mode.
Batched indexing into a matrix:
indices = [[[0, 0]], [[0, 1]]] params = [['a', 'b'], ['c', 'd']] output = [['a'], ['b']]
Batched slice indexing into a matrix:
indices = [[[1]], [[0]]] params = [['a', 'b'], ['c', 'd']] output = [[['c', 'd']], [['a', 'b']]]
Batched indexing into a 3-tensor:
indices = [[[1]], [[0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[[['a1', 'b1'], ['c1', 'd1']]], [[['a0', 'b0'], ['c0', 'd0']]]] indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['c0', 'd0'], ['a1', 'b1']], [['a0', 'b0'], ['c1', 'd1']]] indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['b0', 'b1'], ['d0', 'c1']]
Examples with batched 'params' and 'indices':
batch_dims = 1 indices = [[1], [0]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0', 'd0'], ['a1', 'b1']] batch_dims = 1 indices = [[[1]], [[0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['c0', 'd0']], [['a1', 'b1']]] batch_dims = 1 indices = [[[1, 0]], [[0, 1]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0'], ['b1']]
See also tf.gather
.
Args | |
---|---|
params | A Tensor . The tensor from which to gather values. |
indices | A Tensor . Must be one of the following types: int32 , int64 . Index tensor. |
name | A name for the operation (optional). |
batch_dims | An integer or a scalar 'Tensor'. The number of batch dimensions. |
Returns | |
---|---|
A Tensor . Has the same type as params . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/gather_nd