View source on GitHub |
Constructs an Estimator
instance from given keras model.
tf.keras.estimator.model_to_estimator( keras_model=None, keras_model_path=None, custom_objects=None, model_dir=None, config=None, checkpoint_format='checkpoint', metric_names_map=None )
If you use infrastructure or other tooling that relies on Estimators, you can still build a Keras model and use model_to_estimator to convert the Keras model to an Estimator for use with downstream systems.
For usage example, please see: Creating estimators from Keras Models.
Estimators returned by model_to_estimator
are configured so that they can handle sample weights (similar to keras_model.fit(x, y, sample_weights)
).
To pass sample weights when training or evaluating the Estimator, the first item returned by the input function should be a dictionary with keys features
and sample_weights
. Example below:
keras_model = tf.keras.Model(...) keras_model.compile(...) estimator = tf.keras.estimator.model_to_estimator(keras_model) def input_fn(): return dataset_ops.Dataset.from_tensors( ({'features': features, 'sample_weights': sample_weights}, targets)) estimator.train(input_fn, steps=1)
Note: We do not support creating weighted metrics in Keras and converting them to weighted metrics in the Estimator API usingmodel_to_estimator
. You will have to create these metrics directly on the estimator spec using theadd_metrics
function.
To customize the estimator eval_metric_ops
names, you can pass in the metric_names_map
dictionary mapping the keras model output metric names to the custom names as follows:
input_a = tf.keras.layers.Input(shape=(16,), name='input_a') input_b = tf.keras.layers.Input(shape=(16,), name='input_b') dense = tf.keras.layers.Dense(8, name='dense_1') interm_a = dense(input_a) interm_b = dense(input_b) merged = tf.keras.layers.concatenate([interm_a, interm_b], name='merge') output_a = tf.keras.layers.Dense(3, activation='softmax', name='dense_2')( merged) output_b = tf.keras.layers.Dense(2, activation='softmax', name='dense_3')( merged) keras_model = tf.keras.models.Model( inputs=[input_a, input_b], outputs=[output_a, output_b]) keras_model.compile( loss='categorical_crossentropy', optimizer='rmsprop', metrics={ 'dense_2': 'categorical_accuracy', 'dense_3': 'categorical_accuracy' }) metric_names_map = { 'dense_2_categorical_accuracy': 'acc_1', 'dense_3_categorical_accuracy': 'acc_2', } keras_est = tf.keras.estimator.model_to_estimator( keras_model=keras_model, config=config, metric_names_map=metric_names_map)
Args | |
---|---|
keras_model | A compiled Keras model object. This argument is mutually exclusive with keras_model_path . Estimator's model_fn uses the structure of the model to clone the model. Defaults to None . |
keras_model_path | Path to a compiled Keras model saved on disk, in HDF5 format, which can be generated with the save() method of a Keras model. This argument is mutually exclusive with keras_model . Defaults to None . |
custom_objects | Dictionary for cloning customized objects. This is used with classes that is not part of this pip package. For example, if user maintains a relu6 class that inherits from tf.keras.layers.Layer , then pass custom_objects={'relu6': relu6} . Defaults to None . |
model_dir | Directory to save Estimator model parameters, graph, summary files for TensorBoard, etc. If unset a directory will be created with tempfile.mkdtemp |
config | RunConfig to config Estimator . Allows setting up things in model_fn based on configuration such as num_ps_replicas , or model_dir . Defaults to None . If both config.model_dir and the model_dir argument (above) are specified the model_dir argument takes precedence. |
checkpoint_format | Sets the format of the checkpoint saved by the estimator when training. May be saver or checkpoint , depending on whether to save checkpoints from tf.compat.v1.train.Saver or tf.train.Checkpoint . The default is checkpoint . Estimators use name-based tf.train.Saver checkpoints, while Keras models use object-based checkpoints from tf.train.Checkpoint . Currently, saving object-based checkpoints from model_to_estimator is only supported by Functional and Sequential models. Defaults to 'checkpoint'. |
metric_names_map | Optional dictionary mapping Keras model output metric names to custom names. This can be used to override the default Keras model output metrics names in a multi IO model use case and provide custom names for the eval_metric_ops in Estimator. The Keras model metric names can be obtained using model.metrics_names excluding any loss metrics such as total loss and output losses. For example, if your Keras model has two outputs out_1 and out_2 , with mse loss and acc metric, then model.metrics_names will be ['loss', 'out_1_loss', 'out_2_loss', 'out_1_acc', 'out_2_acc'] . The model metric names excluding the loss metrics will be ['out_1_acc', 'out_2_acc'] . |
Returns | |
---|---|
An Estimator from given keras model. |
Raises | |
---|---|
ValueError | If neither keras_model nor keras_model_path was given. |
ValueError | If both keras_model and keras_model_path was given. |
ValueError | If the keras_model_path is a GCS URI. |
ValueError | If keras_model has not been compiled. |
ValueError | If an invalid checkpoint_format was given. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/estimator/model_to_estimator