View source on GitHub |
Bidirectional wrapper for RNNs.
Inherits From: Wrapper
tf.keras.layers.Bidirectional( layer, merge_mode='concat', weights=None, backward_layer=None, **kwargs )
Arguments | |
---|---|
layer | keras.layers.RNN instance, such as keras.layers.LSTM or keras.layers.GRU . It could also be a keras.layers.Layer instance that meets the following criteria:
|
merge_mode | Mode by which outputs of the forward and backward RNNs will be combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the outputs will not be combined, they will be returned as a list. Default value is 'concat'. |
backward_layer | Optional keras.layers.RNN , or keras.layers.Layer instance to be used to handle backwards input processing. If backward_layer is not provided, the layer instance passed as the layer argument will be used to generate the backward layer automatically. Note that the provided backward_layer layer should have properties matching those of the layer argument, in particular it should have the same values for stateful , return_states , return_sequence , etc. In addition, backward_layer and layer should have different go_backwards argument values. A ValueError will be raised if these requirements are not met. |
The call arguments for this layer are the same as those of the wrapped RNN layer. Beware that when passing the initial_state
argument during the call of this layer, the first half in the list of elements in the initial_state
list will be passed to the forward RNN call and the last half in the list of elements will be passed to the backward RNN call.
Raises | |
---|---|
ValueError |
|
model = Sequential() model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10))) model.add(Bidirectional(LSTM(10))) model.add(Dense(5)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # With custom backward layer model = Sequential() forward_layer = LSTM(10, return_sequences=True) backward_layer = LSTM(10, activation='relu', return_sequences=True, go_backwards=True) model.add(Bidirectional(forward_layer, backward_layer=backward_layer, input_shape=(5, 10))) model.add(Dense(5)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
Attributes | |
---|---|
constraints |
reset_states
reset_states()
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/Bidirectional