W3cubDocs

/TensorFlow 2.3

tf.keras.layers.experimental.preprocessing.Discretization

Buckets data into discrete ranges.

Inherits From: Layer

This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.

Input shape:

Any tf.Tensor or tf.RaggedTensor of dimension 2 or higher.

Output shape:

Same as input shape.

Examples:

Bucketize float values based on provided buckets.

input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]]) layer = tf.keras.layers.experimental.preprocessing.Discretization( ... bins=[0., 1., 2.]) layer(input)

Attributes
bins Optional boundary specification. Bins include the left boundary and exclude the right boundary, so bins=[0., 1., 2.] generates bins (-inf, 0.), [0., 1.), [1., 2.), and [2., +inf).

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/experimental/preprocessing/Discretization