View source on GitHub |
Zero-padding layer for 2D input (e.g. picture).
Inherits From: Layer
tf.keras.layers.ZeroPadding2D( padding=(1, 1), data_format=None, **kwargs )
This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor.
input_shape = (1, 1, 2, 2) x = np.arange(np.prod(input_shape)).reshape(input_shape) print(x) [[[[0 1] [2 3]]]] y = tf.keras.layers.ZeroPadding2D(padding=1)(x) print(y) tf.Tensor( [[[[0 0] [0 0] [0 0] [0 0]] [[0 0] [0 1] [2 3] [0 0]] [[0 0] [0 0] [0 0] [0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
Arguments | |
---|---|
padding | Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
|
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
4D tensor with shape:
data_format
is "channels_last"
: (batch_size, rows, cols, channels)
data_format
is "channels_first"
: (batch_size, channels, rows, cols)
4D tensor with shape:
data_format
is "channels_last"
: (batch_size, padded_rows, padded_cols, channels)
data_format
is "channels_first"
: (batch_size, channels, padded_rows, padded_cols)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/ZeroPadding2D