View source on GitHub |
Zero-padding layer for 3D data (spatial or spatio-temporal).
Inherits From: Layer
tf.keras.layers.ZeroPadding3D( padding=(1, 1, 1), data_format=None, **kwargs )
input_shape = (1, 1, 2, 2, 3) x = np.arange(np.prod(input_shape)).reshape(input_shape) y = tf.keras.layers.ZeroPadding3D(padding=2)(x) print(y.shape) (1, 5, 6, 6, 3)
Arguments | |
---|---|
padding | Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
|
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels) while channels_first corresponds to inputs with shape (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
5D tensor with shape:
data_format
is "channels_last"
: (batch_size, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)
data_format
is "channels_first"
: (batch_size, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)
5D tensor with shape:
data_format
is "channels_last"
: (batch_size, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)
data_format
is "channels_first"
: (batch_size, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/ZeroPadding3D