tf.keras.losses.binary_crossentropy
Computes the binary crossentropy loss.
tf.keras.losses.binary_crossentropy(
y_true, y_pred, from_logits=False, label_smoothing=0
)
Standalone usage:
y_true = [[0, 1], [0, 0]]
y_pred = [[0.6, 0.4], [0.4, 0.6]]
loss = tf.keras.losses.binary_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.916 , 0.714], dtype=float32)
Args |
y_true | Ground truth values. shape = [batch_size, d0, .. dN] . |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] . |
from_logits | Whether y_pred is expected to be a logits tensor. By default, we assume that y_pred encodes a probability distribution. |
label_smoothing | Float in [0, 1]. If > 0 then smooth the labels. |
Returns |
Binary crossentropy loss value. shape = [batch_size, d0, .. dN-1] . |