View source on GitHub |
Computes the squared hinge loss between y_true
and y_pred
.
tf.keras.losses.squared_hinge( y_true, y_pred )
loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)
y_true = np.random.choice([-1, 1], size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.squared_hinge(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( loss.numpy(), np.mean(np.square(np.maximum(1. - y_true * y_pred, 0.)), axis=-1))
Args | |
---|---|
y_true | The ground truth values. y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1. shape = [batch_size, d0, .. dN] . |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] . |
Returns | |
---|---|
Squared hinge loss values. shape = [batch_size, d0, .. dN-1] . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/losses/squared_hinge