tf.keras.wrappers.scikit_learn.KerasClassifier
Implementation of the scikit-learn classifier API for Keras.
tf.keras.wrappers.scikit_learn.KerasClassifier(
build_fn=None, **sk_params
)
Methods
check_params
View source
check_params(
params
)
Checks for user typos in params
.
Arguments |
params | dictionary; the parameters to be checked |
Raises |
ValueError | if any member of params is not a valid argument. |
filter_sk_params
View source
filter_sk_params(
fn, override=None
)
Filters sk_params
and returns those in fn
's arguments.
Arguments |
fn | arbitrary function |
override | dictionary, values to override sk_params |
Returns |
res | dictionary containing variables in both sk_params and fn 's arguments. |
fit
View source
fit(
x, y, **kwargs
)
Constructs a new model with build_fn
& fit the model to (x, y)
.
Arguments |
x | array-like, shape (n_samples, n_features) Training samples where n_samples is the number of samples and n_features is the number of features. |
y | array-like, shape (n_samples,) or (n_samples, n_outputs) True labels for x . |
**kwargs | dictionary arguments Legal arguments are the arguments of Sequential.fit |
Returns |
history | object details about the training history at each epoch. |
Raises |
ValueError | In case of invalid shape for y argument. |
get_params
View source
get_params(
**params
)
Gets parameters for this estimator.
Arguments |
**params | ignored (exists for API compatibility). |
Returns |
Dictionary of parameter names mapped to their values. |
predict
View source
predict(
x, **kwargs
)
Returns the class predictions for the given test data.
Arguments |
x | array-like, shape (n_samples, n_features) Test samples where n_samples is the number of samples and n_features is the number of features. |
**kwargs | dictionary arguments Legal arguments are the arguments of Sequential.predict_classes . |
Returns |
preds | array-like, shape (n_samples,) Class predictions. |
predict_proba
View source
predict_proba(
x, **kwargs
)
Returns class probability estimates for the given test data.
Arguments |
x | array-like, shape (n_samples, n_features) Test samples where n_samples is the number of samples and n_features is the number of features. |
**kwargs | dictionary arguments Legal arguments are the arguments of Sequential.predict_classes . |
Returns |
proba | array-like, shape (n_samples, n_outputs) Class probability estimates. In the case of binary classification, to match the scikit-learn API, will return an array of shape (n_samples, 2) (instead of (n_sample, 1) as in Keras). |
score
View source
score(
x, y, **kwargs
)
Returns the mean accuracy on the given test data and labels.
Arguments |
x | array-like, shape (n_samples, n_features) Test samples where n_samples is the number of samples and n_features is the number of features. |
y | array-like, shape (n_samples,) or (n_samples, n_outputs) True labels for x . |
**kwargs | dictionary arguments Legal arguments are the arguments of Sequential.evaluate . |
Returns |
score | float Mean accuracy of predictions on x wrt. y . |
Raises |
ValueError | If the underlying model isn't configured to compute accuracy. You should pass metrics=["accuracy"] to the .compile() method of the model. |
set_params
View source
set_params(
**params
)
Sets the parameters of this estimator.
Arguments |
**params | Dictionary of parameter names mapped to their values. |