View source on GitHub |
Outputs random values from a normal distribution.
tf.random.normal( shape, mean=0.0, stddev=1.0, dtype=tf.dtypes.float32, seed=None, name=None )
Example that generates a new set of random values every time:
tf.random.set_seed(5); tf.random.normal([4], 0, 1, tf.float32) <tf.Tensor: shape=(4,), dtype=float32, numpy=..., dtype=float32)>
Example that outputs a reproducible result:
tf.random.set_seed(5); tf.random.normal([2,2], 0, 1, tf.float32, seed=1) <tf.Tensor: shape=(2, 2), dtype=float32, numpy= array([[-1.3768897 , -0.01258316], [-0.169515 , 1.0824056 ]], dtype=float32)>
In this case, we are setting both the global and operation-level seed to ensure this result is reproducible. See tf.random.set_seed
for more information.
Args | |
---|---|
shape | A 1-D integer Tensor or Python array. The shape of the output tensor. |
mean | A Tensor or Python value of type dtype , broadcastable with stddev . The mean of the normal distribution. |
stddev | A Tensor or Python value of type dtype , broadcastable with mean . The standard deviation of the normal distribution. |
dtype | The type of the output. |
seed | A Python integer. Used to create a random seed for the distribution. See tf.random.set_seed for behavior. |
name | A name for the operation (optional). |
Returns | |
---|---|
A tensor of the specified shape filled with random normal values. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/random/normal